Class 11 Physics Chapter 4 (समतल में गति)

GSEB Board Solutions for  Class 11 Physics

 Chapter 4  (समतल में गति)

Chapter 3 according to the new book



 

 

अभ्यास के प्रश्नोत्तर 



प्रश्न 1:
निम्नलिखित भौतिक राशियों में से बताइए कि कौन-सी सदिश हैं और कौन-सी अदिश-आयतन, द्रव्यमान, चाल, त्वरण, घनत्व, मोल संख्या, वेग, कोणीय आवृत्ति, विस्थापन, कोणीय वेग।
उत्तर:
सदिश राशियाँ: त्वरण, वेग, विस्थापन तथा कोणीय वेग।
अदिश राशियाँ: आयतन, द्रव्यमान, चाल,घनत्व, मोल-संख्या तथा कोणीय आवृत्ति।

प्रश्न 2:
निम्नांकित सूची में से दो अदिश राशियों को छाँटिए
बल, कोणीय संवेग, कार्य, धारा, रैखिक संवेग, विद्युत क्षेत्र, औसत वेग, चुम्बकीय आघूर्ण, आपेक्षिक वेग।
उत्तर:
दो अदिश राशियाँ कार्य तथा धारा हैं।

प्रश्न 3:
निम्नलिखित सूची में से एकमात्र सदिश राशि को छाँटिए
ताप, दाब, आवेग, समय, शक्ति, पूरी पथ-लम्बाई, ऊर्जा, गुरुत्वीय विभव, घर्षण गुणांक, आवेश।
उत्तर:
दी गई राशियों में एकमात्र सदिश राशि आवेग है।

Class 11 Physics Chapter 4 RDS TEAM

प्रश्न 4:
कारण सहित बताइए कि अदिश तथा सदिश राशियों के साथ क्या निम्नलिखित बीजगणितीय संक्रियाएँ अर्थपूर्ण हैं
(a) दो अदिशों को जोड़ना,
(b) एक ही विमाओं के एक सदिश व एक अदिश को जोड़ना,
(c) एक सदिश को एक अदिश से गुणा करना,
(d) दो अदिशों का गुणन,
(e) दो सदिशों को जोड़ना,
(f) एक सदिश के घटक को उसी सदिश से जोड़ना?
उत्तर:
(a) नहीं, दो अदिशों को जोड़ना केवल तभी अर्थपूर्ण हो सकता है, जबकि दोनों एक ही भौतिक राशि को प्रदर्शित करते हों।
(b) नहीं, सदिश को केवल सदिश के साथ तैथा अदिश को केवल अदिश के साथ ही जोड़ा जा सकता है।,
(c) अर्थपूर्ण है, एक सदिश को एक अदिश से गुणा करने पर एक नया सदिश प्राप्त होता है, जिसका परिमाण सदिश व अदिश के परिमाण के गुणन के बराबर होता है तथा दिशा अपरिवर्तित रहती है।
(d) अर्थपूर्ण है, दो अदिशों के गुणन से प्राप्त नए अदिश का परिमाण दिए गए अदिशों के परिमाण के । गुणन के बराबर होता है।
(e) नहीं, केवल तभी अर्थपूर्ण होगा जबकि दोनों एक ही  भौतिक राशि को प्रदर्शित करते हों।
(f) चूँकि किसी सदिश का घटक एक सदिश होता है जो मूल सदिश के समान भौतिक राशि को निरूपित करता है (जैसे-बल का घटक भी एक बल ही होता है); अत: दोनों को जोड़ना अर्थपूर्ण है।

Class 11 Physics Chapter 4 RDS TEAM


प्रश्न 5:
निम्नलिखित में से प्रत्येक कथन को ध्यानपूर्वक पढिए और कारण सहित बताइए कि यह सत्य है या असत्य
(a) किसी सदिश का परिमाण सदैव एक अदिश होता है।
(b) किसी सदिश का प्रत्येक घटक सदैव अदिश होता है।
(c) किसी कण द्वारा चली गई पथ की कुल लम्बाई सदैव विस्थापन सदिश के परिमाण के बराबर होती है।
(d) किसी कण की औसत चाल (पथ तय करने में लगे समय द्वारा विभाजित कुल पथ-लम्बाई) समय के समान-अन्तराल में कण के औसत वेग के परिमाण से अधिक या उसके बराबर होती है।
(e) उन तीन सदिशों का योग जो एक समतल में नहीं हैं, कभी भी शून्य सदिश नहीं होता।
उत्तर:
(a) सत्य, किसी भी भौतिक राशि का परिमाण एक धनात्मक संख्या है, जिसमें दिशा नहीं होती; अतः यह एक अदिश राशि है।
(b) असत्य, किसी सदिश का प्रत्येक घटक एक सदिश राशि होता है।
(c) असत्य, उदाहरण के लिए यदि कोई व्यक्ति R त्रिज्या के वृत्त की परिधि पर चलते हुए एक चक्कर पूर्ण करता है तो उसके द्वारा तय किए गए पथ की लम्बाई 2π R होगी जबकि विस्थापन का परिमाण शून्य होगा।
(d) सत्य, क्योंकि औसत चाल पूर्ण पथ की लम्बाई पर तथा औसत वेग कुल विस्थापन पर निर्भर करता है। जबकि पूर्ण पथ की लम्बाई सदैव ही विस्थापन के परिमाण से अधिक अथवा बराबर
होती है।
(e) सत्य, शून्य सदिश प्राप्त करने के लिए तीसरा सदिश पहले दो सदिशों के परिणामी के विपरीत दिशा में तथा परिमाण में उसके बराबर होना चाहिए। यह इस दशा में सम्भव नहीं है, चूँकि तीनों सदिश एक समतल में नहीं हैं।
Class 11 Physics  Chapter 4  (समतल में गति) 
प्रश्न 6:
निम्नलिखित असमिकाओं की ज्यामिति या किसी अन्य विधि द्वारा स्थापना कीजिए






Class 11 Physics  Chapter 4  (समतल में गति) 

प्रश्न 7:
दिया है a + b + c + d = 0, नीचे दिए गए कथनों में से कौन-सा सही है
(a) a, b, c  तथा  d में से प्रत्येक शून्य सदिश है।
(b) (a  + c )  का परिमाण (b  + d )  के परिमाण के बराबर है | 
.............................
.............................

उत्तर:
(a) यह कथन सही नहीं है क्योंकि सदिश [latex]\xrightarrow { a }[/latex], [latex]\xrightarrow { b }[/latex],[latex]\xrightarrow { c }[/latex] तथा [latex]\xrightarrow { d }[/latex] का योग शून्य है, (UPBoardSolutions.com) जिससे यह परिणाम
प्राप्त नहीं होता है कि प्रत्येक शून्य सदिश है। अत: कथन (a) सत्य नहीं है।



प्रश्न 8:
तीन लड़कियाँ 200 in त्रिज्या वाली वृत्तीय बर्फीली सतह पर स्केटिंग कर रही हैं। वे सतह के किनारे के बिन्दु P से स्केटिंग शुरू करती हैं तथा P के व्यासीय विपरीत बिन्दु Qपर विभिन्न पथों से होकर पहुँचती हैं, जैसा कि संलग्न चित्र 4.2 में दिखाया गया है। प्रत्येक लड़की के विस्थापन सदिश का परिमाण कितना है? किस लड़की के लिए यह वास्तव में स्केट किए गए पथ की लम्बाई के बराबर है?
हल:
दिया है : वृत्तीय पथ की त्रिज्या (R) = 200 m
∵ प्रत्येक लड़की का विस्थापन सदिश = [latex]\xrightarrow { PQ }[/latex]
∴ विस्थापन सदिश का परिमाण = व्यास PQ की लम्बाई
= 2R = 2x200m
= 400 m
∵ लड़की B द्वारा तय पथ (PQ) की लम्बाई = 2R = 400m
∴ लड़की B के लिए विस्थापन संदिश का (UPBoardSolutions.com) परिमाण वास्तव में स्केट चित्र 4.2 किए गए पथ की लम्बाई के बराबर है।

प्रश्न 9:
कोई साइकिल सवार किसी वृत्तीय पार्क के केन्द्र से चलना शुरू करता है तथा पार्क के किनारे P पर पहुँचता है। पुनः वह पार्क की परिधि के अनुदिश साइकिल चलाता हुआ Qo के रास्ते (जैसा कि चित्र 4.3 में दिखाया गया है) केन्द्र पर वापस आ जाता है। पार्क की त्रिज्या 1 km है। यदि पूरे चक्कर में 10 मिनट लगते हों तो साइकिल सवार का (a) कुल विस्थापन, (b) औसत वेग तथा (c) औसत चाल क्या होगी?
हल:
(a) दिया है : वृत्तीय पार्क की त्रिज्या = 1km
चूंकि साइकिल सवार केन्द्र० से चलकर पुनः केन्द्र0 पर ही पहुँच जाता है, अतः कुल विस्थापन = 0

Class 11 Physics  Chapter 4  (समतल में गति) 
प्रश्न 10:
किसी खुले मैदान में कोई मोटर चालक एक ऐसा रास्ता अपनाता है जो प्रत्येक 500m के बाद उसके बाईं ओर 60° के कोण पर मुड़ जाता है। किसी दिए मोड़ से शुरू होकर मोटर चालक का तीसरे, छठे व आठवें मोड़ पर विस्थापन बताइए। प्रत्येक स्थिति में मोटर चालक द्वारा इन मोड़ों पर तय की गई कुल पध-लम्बाई के साथ विस्थापन के परिमाण की तुलना कीजिए।
हल:
मोटर चालक द्वारा अपनाया गया मार्ग एक समषट्भुज ABCDEF आकार का होगा।
(a) माना कि मोटर चालक शीर्ष A से चलना प्रारम्भ करता है।
तो वह शीर्ष D पर तीसरा मोड़ लेगा। प्रश्नानुसार,
AB = BC = CD = DE = EF = FA = 500 m
∴ तीसरे मोड़ पर विस्थापन ,
= AD = 2x AB (समषट्भुज के गुण से)
= 2x 500 m = 1000 m = 1km
जबकि कुल पथ की लम्बाई
= AB+ BC + CD
= (500 + 500 + 500) m
= 1500 m = 1.5 km
∴ विस्थापन : पथ-लम्बाई = 1 km : 1.5 km = 2:3
(b) मोटर चालक छठा मोड़ शीर्ष A पर लेगा अर्थात् इस क्षण मोटर चालक अपने प्रारम्भिक बिन्दु पर पहुँच चुका होगा।
∴ विस्थापन = शून्य।
जबकि कुल पथ-लम्बाई = AB+ BC + CD+DE. + EF + FA
= 6 x AB = 6 x 500m
= 3000 m = 3 km
विस्थापन : पथ-लम्बाई = 0:3km = 0
(c) मोटर चालक आठवाँ मोड़ शीर्ष C पर लेगा।

Class 11 Physics  Chapter 4  (समतल में गति) 
प्रश्न 11:
कोई यात्री किसी नए शहर में आया है और वह स्टेशन से किसी सीधी सड़क पर स्थित किसी होटल तक जो 10 km दूर है, जाना चाहता है। कोई बेईमान टैक्सी चालक 23 km के चक्करदार रास्ते से उसे ले जाता है और 28 min में होटल में पहुँचता है।
(a) टैक्सी की औसत चाल, और
(b) औसत वेग का परिमाण क्या होगा? क्या वे बराबर हैं।
हल:
दिया है : टैक्सी द्वारा तय कुल दूरी = 23 km,
लगा समय = 28 min
टैक्सी का विस्थापन = स्टेशन से होटल तक सरल रेखीय दूरी
= 10km

प्रश्न 12:
वर्षा का पानी 30 ms-1 की चाल से ऊर्ध्वाधर नीचे गिर रहा है। कोई महिला उत्तर सेदक्षिण की ओर 10 ms-1 की चाल से साइकिल चला रही है। उसे अपना छाता किस दिशा में रखना चाहिए?
हल:


Class 11 Physics  Chapter 4  (समतल में गति) 

प्रश्न 13:
कोई व्यक्ति स्थिर जल में 4.0 km/h की चाल से तैर सकता है। उसे 1.0 km चौड़ी नदी को पार करने में कितना समय लगेगा? यदि नदी 3.0 km/h की स्थिर चाल से बह रही हो और वह नदी के बहाव के लम्ब तैर रहा हो। जब वह नदी के दूसरे किनारे पहुँचता है तो वह नदी के बहाव की ओर कितनी दूर पहुँचेगा?
हल:
∵ तैराक नदी के लम्ब दिशा में तैर रहा है; अतः तैराक का अपना वेग नदी के लम्ब दिशा में कार्य करेगा जब इस दिशा में नदी के अपने वेग का कोई प्रभाव नहीं होगा।
अतः नदी के लम्ब दिशा में नेट वेग = तैराक का अपना वेग


प्रश्न 14:
किसी बन्दरगाह में 72 km/h की चाल से हवा चल रही है और बन्दरगाह में खड़ी किसी नौका के ऊपर लगा झण्डा N-E दिशा में लहरा रहा है। यदि वह नौका उत्तर की ओर 51 km/h की चाल से गति करना प्रारम्भ कर दे तो नौको पर लगा झण्डा किस दिशा में लहराएगा?
हल:


Class 11 Physics  Chapter 4  (समतल में गति) 

Comment to see remaining answers


1 Comments

Please Select Embedded Mode To Show The Comment System.*

Previous Post Next Post

Contact Form